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A Compact 4-GHz Linearize for Space Use

RYUICHI INADA, HIROSHI OGAWA, SUSUMU KITAZUME, AND P. DESANTIS

Abstract —A compact and lightweight 4-GHz fhtearizer for satellite

TWTA’S has been developed by using MIC packages with chip devices.

The linearize is composed of a preamplifier, a predistortion Iinearizer, and

a limiting ampfifier, consisting of two, three, and three 25X 12.5-mm

packages, respectively. It improves the noise power ratio for an FM system

by 3 dB and the required C/N for a TDMA system by 4.5 dB compared

with the conventional satellite TWTA. A space environmental test and an

aging test were successfully performed on the equipment.

I. INTRODUCTION

T WT’S are most commonly used in satellite communi-

cation systems for their large output power for a

reasonable weight and power consumption. In satellite

transponders, it is desirable that the TWTA be operated

near saturation level. However, the amplitude and phase

distortion degrade TWT performances, as seen, for exam-

ple, in AM/AM conversion and AM/PM conversion.

These degraded parameters will cause intermodulation

noise and phase ambiguities in transmitting signals and

will significantly affect the satellite communication system

performance. The linearizing technique is an effective

method for reducing this degradation of the TWTA re-

sponse.

This paper describes the design, construction, and per-

formance of a linearize for satellite TWT’S operating both

in SCPC and in TDMA modes. Space qualification tests

including accelerated aging tests were successfully per-

formed on the equipment and the results are summarized

in Section IV.

II. LINEARIZE DESIGN

There are several methods to compensate TWTA nonlin-

earity; of these, feedforw~d [1], [2] and predistortion

[3]-[11] are widely used.

Fig. 1 shows the block diagram of the feedforward and

predistortion techniques. In the feedforward method, the

input signal is divided into two paths: one for TWT1 and

the other for a reference path whose delay time is equal to

that of TWT1. The two signals are compared in the

error-summing coupler. The error signal is amplified by

TWT2, and the output signal of TWT1 is delayed by a

time equal to TWT2. The two signals are then combined in

an error-injection coupler whose output is the com-
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Fig. 1. Block diagram of the (a) feedforward and (b) predistortion

methods.

pensated signal. This method is stable, since it contains no

closed loops. However, it requires two TWT’S and two

delay lines, which will increase the overall weight and

power consumption. On the other hand, the predistortion

circuit can be realized with low-power amplifiers and

several passive devices. Thus, it can be compact,

lightweight, and have low power consumption. For these

reasons, the predistortion type was selected for usc in

satellite transponders.

Fig. 2 shows the block diagram of the 4-GHz linearize.

It consists of 3 sections: a preamplifier, a predistortion

linearize, and a limiting amplifier. In the preamplifier

section, the input signal is amplified to the level required

to drive the predistortion linearize. Amplitude and phlase

distortion is generated in the predistortion linearize sec-

tion in accordance with the input power level to com-

pensate the nonlinearity of the TWTA. The limiting

amplifier section prevents the TWTA from overdrive oper-

ation, and constant output power can be obtained above

the saturation input level. The predistortion linearize with

the limiting amplifier is called a soft-limit-type linearize,

and it can considerably improve the bit error rate (BER)

[3].

Construction of the predistortion linearize section is

shown in Fig. 2. The input signal is divided into two paths:

one is the linear route and the other is the distortion route.

The signal in the linear path passes through the phase
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Fig. 2. Block diagram of the 4-GHz linearize.
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Fig. 3. Vector diagram of the predistortion linearize for (a) small-sig-
nal level and (b) higher signal level.

shifter and the amplifier, and the signal in the distortion

path passes through the amplifier and the p-i-n attenuator.

The signals are combined by a hybrid. The vector diagram

of the predistortion linearize is shown in Fig. 3. Vectors A

and B show the gain of the linear route and the distortion

route, respectively. Vector C, which is the vector sum of A

and B, is the gain of the output signal. A phase difference

between the two vectors of about 180° is required to

obtain the desired predistortion. For small-signal level, the

gain of the linear route and that of the distortion route are

constant. Thus, the gain of C is constant and no phase

distortion is generated, as shown in Fig. 3(a). When the

input power increases to a higher level, the input level of

the amplifier of the distortion route approaches the satura-

tion input level; hence, the gain of the distortion route is

decreased. On the other hand, the linear route is still at the

small-signal level; hence, the linear route gain is constant.

Therefore, the gain of C is changed to C’, and the phase

distortion rp is generated, as shown in Fig. 2(b). The angle

f3 between A and B can be adjusted by the phase shifter,

and the gain of B can be adjusted by the p-i-n attenuator.

Therefore, the linearize can be adjusted for various types

of TWTA’S.

The linearize consists of eight MIC packages, as shown

by the dotted line in Fig. 2. The first two packages form

the preamplifier. The predistortion linearize is composed
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Fig. 5. Gain and gain variation of the linearize.

of three packages that follow. The last three packages are

the limiting amplifier.

The size of each package is 25x 12.5 mm, wtich in-

cludes MIC’S of 0.381-mm alumina substrate and several

chip devices such as GaAs FET’s, p-i-n diodes, and varac-

tor diodes. The metal caps are laser welded. Balanced-type

amplifiers, p-i-n attenuators, and a phase shifter are used

to provide wide-band performances from 3.3 GHz to 4.7

GHz, Fig. 4 shows the typical gain and return loss data of

the balanced-type amplifier. The isolators can be

eliminated, and a compact and lightweight linearize is

realized.
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Fig. 7. Input/output power and phase transfer characteristics of the

linearize.

The Iinearizer contains the RF section, a voltage regu-

lator, and bias circuits in one housing. In the RF section,

the MIC packages are connected by microstrip line circuit

using Teflon glass substrates. The shielding walls are made

to get adequate isolation between input and output of each

amplifier. The dimensions of the linearize are 160 mm in

length, 110 mm in width, and 23 mm in height; the weight

is 461 g.

III. PERFORMANCE OF LINEARIZE AND

LINEARIZED TWTA

The linearize is adjustable by externally controlling the

bias voltage and current of the phase shifter and the p-i-n

attenuators in order to compensate for the nonlinearity of

the TWTA. The TWTA used in the experiment is a Hughes

model 249H, which is the same as the on-board type TWT

for INTELSAT-V. The linearize is temperature com-

pensated over the range from 10”C to 40°C by using the

sensistors in the bias circuits of the p-i-n attenuators and

the phase shifter.

The gain and gain variation at small signal and satura-

tion are shown in Fig. 5. The gain variation of the lin-

earize is less than 1 dB p-p from 3.7 GHz to 4.2 GHz.

The input/output power and phase transfer characteris-

tics of the TWTA and the linearized TWTA are shown in

Fig. 6. An output backoff of O dB corresponds to the
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Fig. 8. Third-order intermodulation of the TWTA and the linearized
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Fig. 10. BER of the TWTA and the linearized TWTA.

saturation output power of the TWTA, and O-dB input

backoff corresponds to the saturation input power of the

TWTA and linearized TWTA. The power transfer chara-

cteristic of the linearized TWTA is almost linear up to

saturation, and constant above saturation. The phase

transfer characteristic of the linearized TWTA is sup-
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Fig. 11. Test flow of the qualification tests.

pressed to less than 50 p-p. The AM/PM conversion is

reduced to 0.5 O/dB from 3.0 °/dB. The input/output

power and phase transfer characteristics of the linearize

are shown in Fig. 7. An input backoff of O dB corresponds

to the input power of the saturation of the linearized

TWTA. An output backoff of O dB corresponds to the

linearize saturation output. The gain of the linearize

expands as the input power increases. The output power is

limited since the linearize has a limiting amplifier section.

The phase variation versus the input power is about 40°

opposite to the phase variation of the TWTA. Thus, the

phase characteristic of the linearized TWTA is reduced, as

shown in Fig. 8, compared with the linearize.

The third-order intermodulation of the TWTA and lin-

earized TWTA are shown in Fig. 8. The center frequency is

3950 MHz, and separation frequencies of 5 MHz, 20 MHz,

and 50 MHz are used. The amount of improvement due to

linearization is 23 dB at 4-dB output backoff.

The noise power ratio (NPR) responses are shown in

Fig. 9. The linearized TWTA improves 11.6 dB at 7-dB

output backoff. Alternatively, the effective power is in-

creased more than 3 dB compared with the same NPR of

the TWTA 7-dB output backoff.
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Fig. 10 shows downlink C/N versus BER of the TWTA

and the linearized TWTA operating at O-dB output back-

off. An NEC 120-Mbit/s QPSK modem was used in the

experiment. The values C/N = 25 dB and BER = 7 x 10 – G

were chosen as a reference. The resulting downlink CNR

of the linearized TWTA is 4.5 dB less than that of TWTA
to achieve the identical BER at downlink C/N= 25 dB.

Alternatively, the effective power can be increased by 4.5

dB.

IV. SPACE QUALIFICATION TESTS

Qualification tests for the linearize were performed

according to the test flow shown in Fig. 11. Before the

qualification test, thermal cycling (from – 40°C to 75°C,

five cycles) and power aging (168 h at 40°C) were per-

formed.

The linearize was subjected to sinusoidal sweep vibra-

tion, random vibration tests, and thermal vacuum tests at
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the vibration levels and temperatures experienced in actual

satellites. During thermal vacuum tests, thermal cycling

was performed; ten cycles with power turned off were

performed over the survival temperature range (– 40°C to

75 ‘C), along with ten cycles with power turned on over the

temperature range from 10°C to 40”C. The test results of

the linearize in the thermal vacuum test (TVT) are pre-

sented in Figs. 12–14.

The aging test was continued for 720 h at 40°C in room.

This condition is equivalent to 4320 h at 23°C. Electrical

performance was measured at 24 h, 96 h, 288 h, and 720 h.

Trend data are shown in Figs. 15-17, which show that the

linearize is stable with time.

V. CONCLUSIONS

A compact, lightweight, and stable linearize for satellite

applications has been developed using MIC packages. It
has been shown that the linearize is stable throughout the
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Fig. 17. Trend data of BER of linearized TWTA.

environmental tests, thermal vacuum tests, and aging tests.

The linearize improves the third-order IM, NPR, and

BER of a TWTA. It has been shown that the effective

power can be increased by as much as 4.5 dB for SCPC

and TDMA systems. The linearize is adjustable for vari-

ous types of TWT’S.
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